# Selected Topics from ttbar/single top Production at the Tevatron

Weiming Yao (LBNL)

On behalf of the CDF and D0 Collaborations

LHCP 2015, August 31-September 5, 2015 St. Petersburg, Russian







# **Outline**

- Introduction
- Recent ttbar inclusive and differential cross sections
- Recent single top production cross sections
- •All the measurements are based on full dataset(10fb<sup>-1</sup>)
- Conclusion

- •More Details:
- http://www-cdf.fnal.gov/Physics/S15CDFResults.html
- http://www-d0.fnal.gov/Run2Physics/WWW/results/top.htm

### Introduction

- •Top-quark was discovered at the Tevatron by CDF & D0 in 1995, the heaviest quark discovered so far.
  - Mt=176+-12.8 GeV (1995)
  - Mt=174.34+-0.76 GeV (2015)
- •First bare quark ever observed due to a short lifetime of  $5x10^{-25}$  s  $<<\tau_{_{QCD}}$
- Large Yukawa coupling (yt~1) to Higgs boson may play special role in ESB.
- •Studies of top-quark production provide a stringent test of QCD and are sensitive to physics beyond the standard model (BSM).





#### **Top-quark Production at Tevatron**

- •Top-quark is predominately produced in qqbar annihilation (85%) while at LHC the gluon fusion dominates more than 85%.
- •Top-quark can also be produced singly in electroweak processes, which was first discovered by CDF & D0 in 2009 via s-, t-channels while the wt contribution is small.
- •Top production at Tevatron is complementary to LHC and provides unique test of QCD.



| NNLO (m <sub>t</sub> =172.5,PRL 109,132001) | ttbar[pb] | tb[pb] | tqb[pb] | tW[pb] |
|---------------------------------------------|-----------|--------|---------|--------|
| Tevatron(1.96TeV)                           | 7.24      | 1.04   | 2.26    | 0.30   |
| LHC(8 TeV)                                  | 248.50    | 5.50   | 89.14   | 19.50  |
| Ratio (LHC/Tevatron)                        | 34        | 5      | 39      | 65     |

# **Top-quark Decay in SM**

•Top-quark predominately decays into Wb with B(t→wb)=100%, final states

determined by W decays.

#### **Top Pair Branching Fractions**





# **Events Selection and Analysis Strategies**

- •Select isolated lepton(s), high missing Et from neutrinos, one or more btagged jets:
- •The ttbar final states:
  - -Dilepton: 2 isolated leptons
  - Lepton+jets: one isolated lepton+jets
  - –Alljets: 0 isolated leptons.
- •Single top production:
  - S-chan: one isolated lep+ 2bs
  - T-chan: one isolated lep+1b+q
- •Backgrounds:
  - –W+jets is dominated in I+jets.
  - –Z+jets is dominated in dileptons.
  - Multijet is dominated in allhad.
- •NLO MC calibrated using data control samples.
- Using MVA to separate S from B
- •MVA pioneered by Tevatron and now heavily used by LHC.



#### ttbar Inclusive Cross Section using Full dataset

- •D0 recently updated ttbar xsec using improved analysis in I+jets and dilepton with full dataset:
  - -I+jets: divided six subsamples based on lepton type & njets, and each trained its own BDT with 20 variables plus b-tag MVA.
  - Dilepton: divided four subsamples and use btag MVA of leading jet as discriminant
- Performed simultaneous fits across all samples(pb):





→Comb:
$$\sigma_{tt}$$
=7.73±0.13±0.55

→NNLO: 
$$\sigma_{tt}$$
=7.35  $^{+0.23}_{-0.27}$  (mt=172.5)

→Consistent with previous Tevatron averages in PRD 89, 072001,2014.







D0 Note 6453-CONF

# **Differential Cross Section**

- •Measuing differential cross section as function of  $m_{tt}$ ,  $p_{tt}$ ,  $y_{tt}$  is interesting, sensitive to top production mechanisms and can be measured using fully reconstructed ttbar in the b-tagged lepton + 4 jets.
- •After unfolded up to parton-level, data are consistent with MC@NLO predictions.







Ratio to approx. NNLO

8

#### **More Differential Cross Sections**

•Data and unfolded distributions for pt, y after correcting detector effects:



•Unfolded data are in reasonable agreement with MC@NLO.

PRD 90, 092006 (2014)

# **D0 Single Top Analysis**

- •Measuring each single top cross section simultaneously in lepton+2 or 3jets with 9.7fb-1.
- •Trained 3 MVAs that select different evnt kinematics to separate tqb and tb signals from backgrounds.
- Obtained tqb and tb cross sections by combining of 3 MVAs using a BayesianNN statistical tool:









Consistent of first s-chan evidence at 3.7σ!

### **CDF** s-channel Single Top Analyses

- •CDF updated s-chan tb search using full dataset based on WH→lvbb search strategies & selections
- -L+jets: Lepton + 2 or 3 jets with 1 or 2 btags
- -Met+jets: orthogonal to l+jets selection
- Measured s-chan xsec combining both analyses.







CDF combination:  $\sigma_s = 1.36^{+0.37} \text{ pb}$ 

Corresponds to a s-chan evidence at  $4.2\sigma$ 

PRL 112,231805 (2014)

# **Observation of s-chan Single Top Production** at Tevatron

- •Summed log(s/b) from each s-chan discriminant bin in CDF(I+jets,met+jets) & D0(I+jets) to form a discriminant.
- Fitted using Bayesian statistical analysis with all systematic & correlations.
- •First s-chan single top is observed at Tevatron with 6.3σ!





s-channel single top quark, Tevatron Run II,  $L_{\perp} \le 9.7$  fb<sup>-1</sup>

Expected significance: 5.1 s.d.

Observed significance: 6.3 s.d.

; 1 s.d.

Background only

SM expected

↓ Observed

SM signal + background

PRL 112, 231803

 $m_{top} = 172.5 \text{ GeV}$ 

Measurement

CDF l+jets

D0 l+jets

**CDF** combined

Tevatron combined

Theory (NLO+NNLL)

Cross section [pb]

### **Tevatron Final Single Top Measurements**

- Combined t-, s-chan contributions from each discriminant bin to form a discriminant as (s-chan – t-chan)/backgroud
- Fitted s-, t-, and s+t cross sections including all systematic and correlations are in good agreement with SM predictions.







# **Measurement of |Vtb|**

- •Assuming SM top decay, the single top cross section is proportional to CKM matrix element  $|Vtb|^2$ . Consequently, |Vtb| can be measured directly without any assumptions on SM  $\sigma_s/\sigma_t$  ratios, generations, or unitarity.
- •Form a Bayesian posterior probability density for |Vtb|<sup>2</sup> by assuming a flat prior.
- •Tevatron obtained:
  - -|Vtb|=1.02+0.06-0.05
  - -|Vtb|>=0.92 at 95% C.L.

ArXiv:1503.05027



# Conclusion

- •Selected ttbar and single top results at Tevatron are presented with full 10<sup>-1</sup> fb.
- •Study of top quark at Tevatron is complementary to LHC and provides an unique test of QCD predictions.
- •CDF & D0 experiments are finishing their legacy measurements and the results are in excellent agreement with SM predictions.





